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Let X be a random variable distributed with the cdf F'x. Suppose g(:) is some
function, what is the distribution of Y = ¢g(X)?

In many settings, we want to know the behavior of functions of random variables.
Any function of random variable is also a random variable. Transformation and
change of random variables is very important. For example, if X ~ N(0,1) is the
standard Gaussian random variable, then Y = X? is a Chi-squared distribution,
which is an important class of distributions used in hypothesis testing. Further if
Y = X, then Y has a log-normal distribution, which is used to model variables that
take positive real values, such as income, asset prices, etc.

1. Transformation of Continuous Random Variables

Let Y = g(X), Fy denotes the cdf of Y and Fx denotes the cdf of X. From the
definition of the cdf of Y:

Therefore, we have expressed the cdf of Y in terms of the pdf of the original random
variable X.

Examples:
1.) X ~U[—1,1] and Y = exp(X).
That is:
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fe@) {5, if 2 € [—1,1]

0, otherwise

0, ifr <-—1
Fx(z) =< 241z, ifz e [-1,1]
1 ifzr>1

Therefore

0, if logy < —1
Fx(logy) = § § + $logy, if logy € [-1,1]
1, if logy > 1
As such, the cdf of Y is,
0,ify<1?
Fy(y)=q3+3logy, ify € [Z.¢]
1, ify>e

The pdf of Y is fy(y) = 2@ = L for y € [2, ¢], and fy(y) = 0 fory ¢ [L, ).
dy 2y € e

2) X ~U[-1,1] and Y = X?.
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The second last equality follows from Fx(—/y) =1 — Fx(\/y)-

2. A general formula for the transformation of random variables

It is easy to derive the cdf and the pdf of Y when the transformation function g
is a continuous monotonic function. A function is monotone (strictly) increasing
ifu>v = g(u) > g(v), and a function is monotone (strictly) decreasing if
u>v = g(u) < g(v). We now derive a general formula for the transformation of
a continuous random variable X.

Setup: let X be the random variable with the support X. The support' of X
is the region where the pdf of X is positive; outside of the support, the pdf is
zero. Now let Y = g(X), where g is monotone over X'. The support of Y is then
Y={yeR:y=g(x) for some z € X}.

If the transformation is monotone, then there is a bijection (one-to-one and onto)?
between X and Y. As such, g7'(y) = {z € X : g(x) = y} exists, and it is a single-
valued monotone function, that is increasing if g is increasing, and it is decreasing
if ¢ is decreasing.

Hence, if g(x) is a (strictly) increasing function, then:

Fy(y) =P (Y <)
= PX(9<X) < y)

= / fx(x)dx
{zeX:g(z)<y}

_ / fx(@)de = Px(X < g7} (y))
{zeX:x<g=1(y)}

9 (y)
/ fx(x)dx

= Fx(97'(v))

The pdf is:

IThe support is also the sample space
2One-to-one (injective): for all z,2’ € X, g(z) = g(z') = = = 2’
each y € Y, there is an x € X such that g(z) = y.

Onto (surjective): for

3
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= by the chain rule

If g(x) is a (strictly) decreasing function, then

Fy(y) = P (Y <)
= PX(Q(X) < y)
=Px(X >g7'(y)

= / fx(z)dx
{zeX:x>g~1(y)}

)
= 1-Fx(97'(»))
- dFy (y)
__dg'(y) dFx (97 ()
dy dx
Moreover, dg:l—;(y) has a negative sign when g is decreasing, and dg;—;(y) has a positive

sign when g is increasing. Therefore we can succinctly rewrite the pdf of Y = g(X)
as:

, forye)

Fly) = ‘dgl(y) ‘de<gl<y>>

dy dx
Example:

Suppose X ~ UJ0,1], then Fx(z) =z for 0 <z < 1, and fx(z)=1for0 <z <1
(remember to specify the pdf and cdf completely, which is not done here). Further
suppose that Y = ¢g(X) = —log(X). Check that g(z) is a monotone decreasing
function over 0 < 2 < 1 (whose derivative is —1 < 0). As such, when the domain

4
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is restricted to (0, 1), the inverse of g exists and it is given by ¢~1(y) = e7¥. Check
that g (g(z)) = €'°8® = 1.

But what is the support (sample space) of Y'? The function g maps (0, 1) bijectively
to (0,00). Therefore, the pdf of YV is:

0 ify <0
Frly) = {ey ify >0
The cdf of YV is:
0, ify <0
F =
() {1—FX(g_1(y)):1—e_y, ify>0

2.1. Piecewise monotonic transformation

What if the function ¢ is not monotone over the sample space X? By Theorem 2.1.8
in Casella-Berger, we can partition X into Ay, A4, ..., A such that the function g is
monotone over each Ay, ..., A;. Then we can just apply the previous transformation
formula separately over these sets, and then summing up the individual pdfs to
obtain the overall pdf.

Let X has the pdf fx(z). Let the transformation be Y = ¢g(X). Let Ay, Ay, ..., Ay
be a partition of the support of X. Further, let gy,..., gr be monotone functions
such that g(z) = g;(z) for x € A;. That is, g; is the function g whose domain is
restricted to the set A;.

Ap is an “exception” set Px(X € Ag) = 0, which can be ignored. We also assume
that the pdf fx(z) is a continuous function on each A;. Further, the functions g;
have identical range, in the sense that Y = {y : y = g;(x),3x € A;} is the same for
each 7. In another words, each g; is a one-to-one transformation from A; onto ).
Finally, g; ' (y) has continuous derivative on ).

The pdf of Y = g(X) is:

dg; " (y)
dy

, forye )

foly) = {z fx(g7 ()

0, otherwise

Example:
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g2
Let X have the standard Normal distribution. fx(x) = \/%767 for z € (—o0, 00).

Consider Y = X?%. The function g(z) = 2 is monotone on (—oc0,0) and on

(0, 00).

Let Ag = {0}, A = (—00,0), Ay = (0,00). Let g;(z) = 2% for z < 0, and go(z) = 2*
for # > 0. The respective inverses are: g;'(y) = —/¥y for y > 0, and g, (y) = /¥
for y > 0. Thus the pdf of YV is:

—(vD)?

1 -w?
2 2

1 ‘ 1 1
2yl 2w 2\/y
1

—e7 for y € (0,0)

1
T Var i

Y is a chi-squared random variable with 1 degree of freedom. We check that all the

-1
technical conditions are satisfied. P(X = 0) = 0. dg{i—y(y) = _ﬁg is continuous for

y > 0. Finally, each g; is a one-to-one function from A; onto Y = {y e R : y >

0}.

The inverse function theorem can be helpful in deriving %. It says that if g(x)
is a continuously differentiable function with nonzero derivative at the point x =
g 1(y), then g is invertible in a neighborhood of g~!(y), the inverse is continuously
differentiable, and the derivative of the inverse function at y is the reciprocal of the

derivative of g at g~ (y):

dy 9@y
2.2. Probability integral transformation

Let X have continuous cdf Fx(x) and define Y = Fx(X). Then Y is uniformly
distributed on (0, 1), that is, P(Y <y) =y for 0 <y < 1.

= Fx(Fx'(y))

= P(X < Fy'(y)) since Fy is increasing
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Similarly, let Y be uniformly distributed on (0,1), and let Z = F'(Y). Then Z
has the cdf:

P(Z <z)=P(F'(Y) < 2)
= Py(Y < Fx(2)) since Fi! is increasing
= Fx(2)

Z and X are identically distributed and has the same cdf. This result is important, as
it allows us to generate random samples from any probability distribution. Suppose
we want to draw a random sample x from a population with cdf Fx. First, we
draw a uniform random number u between 0 and 1, then apply the transformation
Fit(u).

Example:

Suppose we want to draw random samples (z1,...,z,) from the exponential dis-
tribution Fix(z) = 1 — exp(—x). First we draw (uy,...,u,) from U[0,1]. Then let
vs = i (us) = log(+y)

An example using R: see web appendix.

3. Transformation of Discrete Random Variables*

Let X be a discrete random variable, then X', the sample space of X, is countable.
Let the pmf of X be fx, the sample space (or support) is X = {x € R : fx(x) >

0}.

The sample space for Y = g(X)is Y ={y € R:y = g(x),z € X}, which is also a
countable set. Thus, Y is also a discrete random variable. The pmf for Y is:

I
]
o
O
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4. Expectation
The expected value, or mean, of a random variable g(X) is:

ffooo g(x) fx(X)dx if X is continuous

Elg(X)] = {erx g(x)P(X = z) if X is discrete

In the formula above, expectation is the average of the values of the random vari-
able, weighted by the probability distribution. Expected value is a commonly used
measure of “central tendency” of a random variable X. Note: expectation is a
population average, not sample average.

Properties of the expectation operator:

1.) Expectation is a linear operator: Elag;(X) + bgo(X) + ] = aE[g1(X)] +
bE[g2(X)] + c.

2.) If g1(x) > 0 for all z € X, then E[g;(X)] > 0.

3.) If g1(x) > go(x) for all z € X, then E[g;(X)] > E[g2(X)].

Example:

If X has a binomial distribution Bin(n,p) where n and p are parameters, its pmf is
given by

n
€T

P(X =12)= ( )px(l —p)"F, forz=0,1,...,n

1.) The binomial distribution is the discrete probability distribution of the number
of successes in a sequence of n independent trials with binary outcomes, and where
the probability of success in each trial is p.
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3

5X] = Z)pm _ppe
Z B Dpx(l —p)"

Il
—_ =

SIH

-1

Il
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NE
PPN

)py“(l —p)"" WD substitute y = v — 1

<
Il
o
<

Since ZZ;S) (”;1) pY(1—p)"~17¥ is the sum over all possible values of a binomial pmf
with parameters (n — 1) and p.

Example:

Suppose X is Exponentially distributed with the parameter A and has the pdf
[x(z) = Ae™**. What is E[X]?

5. Other central-tendency measures

The expected value of a random variable may not exist. A well-known example
is the Cauchy distribution. However other central-tendency measures such as the
median and the mode are well-defined in the case of the Cauchy distribution.

The Cauchy distribution has the pdf f(x) = m
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E[X] = /OO o f(z)dw

o0

= lim lim zf(z)dz

U—00 |——00 1

= lim lim zf(z)dr  for a well-defined intergral
l=—ocou—o0 J;

For an integral to be well-defined®, we require that lim,_ . lim;_,_ o fl m -
limy o0 limusoo f;" 72

For the Cauchy distribution, it can be shown that:

L v .. log(1+wu?)  log(l+1?)
lim lim ——— = lim lim — = —00
u—00 l—+—00 J; 7r(1 + x2) U—00 l——00 s s
u log(1 2 log(1 + [?
lim lim v lim lim og(l + ) — og(1+17) =00
l—»—cou—oo J; 7'('(1 -+ 1132) l——00 u—00 T ™
0.4},
0.3
0.2

-5 5

FiGure 1. Cauchy distribution vs Normal distribution

The Cauchy distribution has much fatter tail than the Normal distribution. Consider
another intuition for why the mean of the Cauchy distribution is undefined. For X
that is distributed as Cauchy, E[X]| = f_ o f(x)de+ [;° 2 f(x)de = —oo+00, which
is undefined.

3Note that f x)dr # limy_ f g(z)dz. Indeed for an odd function g(x), we always

have lim;_, o f g(z )dx = 0. Therefore, lim;_, s, f ¢ 1+zz)dgc = 0. The Cauchy principal value is

defined as lim;_, o f g(x)dx, for a function g even when f (z)dx is undefined.

10
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5.1. Median

The median of the random variable X is med(X) = m such that Fx(m) = 0.5. That
is, the median is the value such that fiﬂoo fx(z)dx = 0.5. It is robust to outliers,

and has a nice invariance property: for Y = g(X) and g monotonic increasing, then
med(Y) = g(med(X)).

Example 1:
Suppose X ~ Exp(A) and has the pdf fx(z) = Ae™* for x > 0. What is the median
of X7
0.5 = / e Mdx
0
_Az1m
0.5 = [—e ]
05=1—em
+log(2)
m=—1lo
b\ g
Example 2:

What about the mean and median of Y = log(X), where X has the pdf e=*7

E[Y] = / log(z)e " dz
0
= —FEuler’s constant

~ —0.577216

In general, when X has the pdf fx(x) = Xe™**, we have E[log(X)] = —y —
log(\).
Show that the median of Y is log(log(2)) — log(\).

5.2. Mode

The mode of X is Mode(X) = argmax, fx(x). That is, the mode is the peak of the
pdf of X.

Suppose X has the pdf fx(r) = Ae™**. The mode of X is argmax, e ™ =
0.

11
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Suppose Y = log(X). The mode of Y is argmax,e’e™® = argmax,cpy — e’ =
0.

The solution can be found by calculating the first-order condition and then checking
the second-order condition. For more complicated functions, we can find the solution
numerically using just one line of code in MATLAB:

fminunc(@(y)exp(y)-y,-2).
In R, it can be implemented as:

optimize(function(x) exp(x) - x,c(-10,10))

6. Higher moments

For each integer n, the n-th moment of X is defined as E[X™"].
The n-th centered moment of X is E[(X — E[X])"].

The mean E[X] is the first moment of X, and the variance is the second centered
moment of X.

The variance of the random variable X is defined as Var(X) = E[(X —E[X])?]. The
positive square root of Var(X) is the standard deviation of X.

Properties of the variance:

1.) Var(aX +b) = a*Var(X). Variance is not a linear operation. Moreover, variance
measures the spread of a distribution around its mean, and so it is unaffected when
a constant is added to the X.

2.) Var(X) = E[X?] — E[X]? (alternative formula for the variance)
Example 1:
Suppose X has the pdf fx(x) = Ae™**. What is the variance of X?

E[X?] :/ e Mdx
0

- [—a:QG_Aﬂ;O — /000 —9xe Mdx

=0+ / 2re Mdx
0
2

22
12
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Therefore Var(z) = % — % =L

>

Example 2:
Suppose X has the pdf fx(z) = Ae™**. What is the variance of Y = log(X)?

E[Y?] = E[log(X)’]

log(z)*\e M dx
2

7+ T+ 2ylog(Y) + log(A)?

I
S—

[\

s
% + (7 + log(N))?
Therefore Var(Y) = %2 ~ 1.64493, which does not depend on .

What information does the third moment convey? Consider the third-centered
moment of a random variable, E[(X — E[X]?)].

Going back to our example. Let X ~ Exp(\).

E[(X —E[X])%] = /OOO (g; — %)3 e Mdx
2

T3
>0

Now let Y = log(X), and consider the third-centered moment of Y.

Bl - B} - | " (4 7 + log ()P Acve dy

— -3
~ —2.40411 <0

Where ((s) is the Riemann-Zeta function. In particular, ((3) = > 07, &

n=1 n3"
The third-centered moment conveys information about the skewness of a random
variable. A negative skewness value means the tail is on the left side of the dis-
tribution, and positive skewness indicates that the tail is on the right. Verify this
visually, using the fact that Y = log X has the pdf fy(y) = \e?=*¢".

13
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In order for the third-centered moment to be comparable across different scales of
random variables, skewness is defined as the third standardized moment. Going
back to our examples:

x-Ex)\’| 1 o

2
_\3
=%
:2

Var(Y)) | (2)2

(Y—Ewgg —2¢(3)

~ —1.13955

Which does not depend on A. Again, we emphasize that these are the population
moments (population variance, population skewness, etc). These are theoretical
values — true values associated with a random variable. Later, we will talk about
sample moments: given a vector of numbers zy,...,x,, how do we calculate the
sample mean, sample variance, sample skewness, etc.

7. Moments Generating Function

The moments of a random variable are summarized in the moment generating

function (mgf). Definition: the moment-generating function of X is Mx(t) =
Elexp(tX)], provided that the expectation exists in some neighborhood t € [—h, h]
of zero.

Specifically,

My (t) = ffooo e fx(z)dx, for X continuous
o Y pex €P(X =x), for X discrete

The mgf has the property that

14
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dTL
EX"| = —Mx(t
X7 = M)
t=0
That is, the n-th derivative of the MGF evaluated at ¢ = 0 gives the n-th mo-
ment of the corresponding random variable. Another notation for ;@—’;M x (%) is
MP(0).

When it exists, then mgf provides alternative description of a probability distribu-
tion. Mathematically, it is a Laplace transform, which can be convenient for certain
mathematical calculations.

Example:

22

Let X be the standard Normal distribution. As such fx(x) = \/%e 7.

™

+2

First moment of X is M (0) =e=|_ =0.

=0

= 1.
t=0

The second moment of X is M®(0) = Ltes

= (eé + t(teg))

= 0.
t=0

The third moment of X is M®)(0) = (te% +2teT + t3et7>

Moment generating function will be useful later when we talk about the central limit
theorem. Moreover, mgf has the nice property that:

15
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Let S =" | a;X;, where X; are independent random variables. The mgf for S is
given by Mg(t) = My, (a1t) X Mx,(ast) X -+ X Mx, (ant).

To see the intuition behind mgf, consider the Taylor series expansion of e/ around

t=20

1 1
g(t) = 9(0) + 55t9'(0) + ;79 (0) + ...

1 1 1
tx 2 2 3..3
e ——1+—1!tx+—2!ta: +—3!tx + ...

1 1
E[e'] = 1 +tE[X] + 5#1@[)@] + §t3E[X3] +...

Hence the first-derivative of E[e!*] with respect to ¢ evaluated at ¢ = 0 is E[X], the
second-derivative of E[e!*] w.r.t ¢ evaluated at ¢ = 0 is E[X?], and so on.

16
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